Tag Archives: american science & surplus

Fun With Ultraviolet, the 2022 Edition

Apologies for writing about the weather all of the time, but after this brain-frying summer and subsequent August and September superstorms, merely being able to go outside without burning skin or lungs is taken for granted through most of the world. Here, though, not only do we have the thrill of not risking second-degree burns for walking outside barefoot, but there the sheer joy of stepping outside and realizing “You know, it’s warmer inside than outside.” After four months of looking at digital thermometers with a combination of rage and horror, the real fun comes when talking about the weekend, mentioning “it’s 50 degrees in the shade,” and not having that refer to Celsius.

Because of the influx of this strange not-hot weather, the local flora responds the same way we humans do: with a mad rush to make up for lost time. This was a summer so brutal that anything bearing fruit or nuts requiring large amounts of water is just exploding right now, asking for a do-over. Plants that normally bloom in the early spring are going into overdrive at the end of September, and plants that bloom all year long don’t know what to do with themselves. Even better, the rush is on for night-blooming flowers of all sorts because the insects that depend upon them will be dying or going dormant soon, which means one thing. Yes, it’s time to get out into the garden with ultraviolet lights to view the fluorescence.

As brought up elsewhere, most of the commonly available “black light” LED flashlights and lanterns pump out far too much visible light to be effective at viewing plant fluorescence, as the visible light washes out fluorescence in anything but the strongest displays. The best affordable options for backyard naturalists involve violet laser pointers, which tend to throw off large amounts of UV, and beam splitters to turn that laser light into more of a laser flashlight. In a pinch, for financial reasons and for initial experiments, the wonderful crew at American Science & Surplus offer a very cost-effective compromise, the violet kaleidoscopic laser pointer.

(Disclaimer: ALWAYS use eye protection when using a laser. Read the laser’s user guide and all labels before using. Never point a laser at your own face, that of anybody else, that of animals, or at passing aircraft. Do not point a violet laser at any apparatus, such as camera lenses, that could be affected by ultraviolet light. If you decide to ignore this advice, the Texas Triffid Ranch and all entities associated with it are not responsible, either legally or financially, for physical, mental, or financial damages. Let’s have a little common sense here, kids.)

The big advantage with the kaleidoscopic laser pointer is that for basic experiments in plant fluorescence, the pointer already comes with a diffraction grate to spread the beam around and offer endless entertainment for cats and Pink Floyd fans. Setting the pointer’s grate so it diffuses the beam the most may affect the ability to take images or video of the fluorescence effect, and anyone wanting to understand the limits of that fluorescence should consider working with a beam splitter. For quick and dirty observation in a garden environment, though, it can’t be beat.

The photo at the top of this article sums up the situation. The white pitcher plant, Sarracenia leucophylla, not only fluoresces blue along the pitcher lip under UV, but the whole top of the pitcher famously fluoresces under moonlight. The photo doesn’t do the fluorescence justice: laser pointer use not only fluoresces the upper third of the pitcher, but it attracts local moths and other nocturnal insects even more so than usual. The effect on other Sarracenia is muted under moonlight or general light pollution, so the best results come from viewing after moonrise or moonset in an area without streetlights.

Next, it’s time to test flowers already known for attracting nocturnal insects. In this case, the moonflower (Ipomoea alba) also stands out under moonlight, but the real surprise under UV is that its stamens are particularly brilliant. This helps explain why moonflowers are so popular with so many species of hawkmoth, and the plan is to test this theory next year with angel trumpets (Datura spp.) to see if they fluoresce the same way and intensity.

The real surprise in the garden this year? The spring attempt to get luffa squash (Luffa aegyptiaca) established ran right into our early summer, and the vines are only now starting to expand and produce female flowers. The flowers are also going the reverse of previous growing efforts, with the blooms opening in the evening and closing by sunrise.

That works out very well, to be honest, because luffa blooms fluoresce slightly, but the pollen fluoresces much more. On a still night, the pollen all over the bloom makes the bloom under UV look as if it were dusted with glow powder. Get too close with a camera, and the glow off luffa pollen will wash out everything else.

Naturally, this is only the beginning of experimentation. We still have at least a month in Dallas before the standard growing season is complete and all of the carnivores start going into dormancy, with so many carnivores with UV secrets. Even better, the moon is currently new, so the nights are dark even with the moon above the horizon. Expect all sorts of discoveries.

Science Experimentation at Grad Student Prices: Nepenthes bicalcarata

One of the nice things about having absolutely no natural light in the back area of the gallery, and having all of the lights on timers to encourage winter growth patterns and spring blooming, is that it gets DARK back there when the lights go out. While this is horrific if you get turned around and can’t find the front hallway, it’s excellent when conducting experiments with ultraviolet light. A little messing about with the handy violet kaleidoscope laser pointer in the gallery led to some interesting observations.

To begin, the squat little pitcher up top belongs to the famous Asian pitcher plant Nepenthes bicalcarata. N. bicalcarata is one of the only Nepenthes species to have a commonly used nickname in carnivorous plant circles, “bicalc” singular or “bicalcs” plural, and it’s also one of the only Nepenthes species to have a common name in English. That name, “fanged pitcher plant,” refers to the two distinctive sharp “fangs: that run down from where the pitcher meets its lid. Those “fangs” are officially called nectaries, in that they secrete and channel nectar, which leads to the slightly disturbing view of a happy and healthy bicalc being one that’s drooling nectar off these structures like a snake’s fangs dripping venom. These nectaries are both strong and sharp, leading to all sorts of suppositions on how the “fangs” prevent monkeys and birds from removing trapped prey from the pitcher. The reality, however, is that nobody really knows what these structures are for, as well as the comparably eye-catching and risky structures on the equally famous N. inermis, N. edwardsiana, and N. hamata.

As a handy hat-tip to any grad student wanting an interesting subject for their first paper, N. bicalcarata shares with its insectivorous kin an actively ultraviolet-fluorescing band of tissue along the lip of pitchers called the peristome. This is fascinating but not necessarily news: this fluorescence has been known among many completely unrelated genera of carnivorous plant for the last decade, and Nepenthes species such as N. hemsleyana and N. ampullaria that no longer produce digestive enzymes in their pitcher fluid also no longer have UV-fluorescent peristomes. What might be news is that nobody seems to have noted that the nectaries on N. bicalcarata fluoresce as hard and as brightly as the peristome itself.

The real surprise? This is an absolutely horrible photo that will require retaking with an actual photographer, but this is the fluorescence of a juvenile N. bicalcarata pitcher. Interestingly, the pitcher itself fluoresces a bright red along the peristome, but the nectaries, only a little over a millimeter long, fluoresce the same yellow-green as the nectaries on full-sized pitchers.

As to why these nectaries fluoresce, that’s a really good question. Since I don’t have any in the gallery at the moment, I don’t know if N. edwardsiana and N. hamata peristomes fluoresce in the same way, or if they go for different patterns under UV the way Nepenthes species with particularly wide peristomes (such as N. rafflesiana) do. I also don’t know at the moment whether the fluorescence in the nectaries matches that of the peristomes as the pitcher ages and dies, because that requires repeated observations over the months the pitcher may live. However, for an enterprising botany grad student wishing to publish for the first time with a paper that might get to the top of standard newsfeeds, run with this.

Investigating UV fluorescence in carnivorous plants at grad student prices

Back in February, many of you may remember the distinctive paper in Plant Biology titled “Fluorescent prey traps in carnivorous plants” and the subsequent popular science reportage. As can be expected, this opened up a whole new series of questions as how carnivores attract insect prey, with the biggest limitation being the ability to study the phenomenon. The situation is aggravated by the wild variability of consumer-grade ultraviolet light sources, particularly ones that produce the correct frequency of UV to fluoresce carnivore structures. While many UV LED arrangements, such as the flashlights used for viewing UV ink stamps at nightclubs, will fluoresce these structures, they also tend to emit enough visible light to wash out the effect.

In trying to study this further, the problem lay with finding a UV source that produced the correct wavelength, cut back on the amount of visible light being emitted, and kept the cost of the final arrangement to a reasonable amount. The last immediately removed shortwave UV lamps, used for decades for viewing fluorescent minerals, from consideration, as these can run well outside of a typical underclass or grad student’s budget. Thankfully, it’s possible, with a little modification, to make a perfectly suitable and very effective arrangement that, while not necessarily precise, allows researchers to experience carnivorous plant fluorescence in the field.

AS&S violet laser

The core of this apparatus is a violet laser, which emits enough UV for any number of fluorescence effects. (As can be expected, violet lasers are now the go-to item at raves and music festivals for precisely this reason.) While available from many sources, this one came from American Science & Surplus. One limitation, due to US regulations, is that it uses a momentary switch to turn on and off, requiring the user to keep it held down in order to use it. Other than that, it has exceptional range, which means that it has enough power for more long-range field observation, such as seeking fluorescing carnivores at night.

DISCLAIMER: Since a violet laser produces a significant amount of UV, neither the Texas Triffid Ranch nor anyone involved with it takes any responsibility or accepts any liability for damages or injuries caused or abetted by the misuse of said laser. Keep this thing out of your eyes and the eyes of innocent bystanders, and wear protective eyewear when using it. Likewise, keep it away from exposed skin whenever possible.

Laser beam (unmodified)

The other limitation to using a violet laser is tied to the basic concept of a laser. Namely, it emits a beam of coherent light in a pinpoint. As the photo above shows, this means that the light from the laser scatters in air (the reason, by the way, why the visible lasers in science fiction movies and television are impossible, unless someone fires one into a cloud of gas or vapor), but not quite enough for our purposes. What’s needed is a coherent light that also spreads out laterally, just enough to cover a larger area and to view fluorescence effects without the visible light component washing it out. For that, we’re going to need an optical diffuser.

ThorLabs diffuser

Another thing to consider when working with UV is that standard glass absorbs UV: this is the phenomenon that allows people in glass greenhouses to work in full sun all day without suffering crippling sunburn. (Take this from an authority on “shedding like a monitor lizard all summer long”.) Because of that, standard glass diffusers intended for coherent and incoherent light won’t work. You’ll have to pay a bit more, but Thorlabs offers a series of fused silica diffusers designed for UV, in polishes from 120 grit to 1500 grit. Since I knew precious little of what I was doing, I bought one 120 and one 1500 to compare the effects, and then tested it with the laser back from the diffuser by about a centimeter.

Laser beam with diffusor

As the photo shows, the diffuser does an exemplary job of spreading the laser beam while still keeping it reasonably coherent. The only problem right now is with keeping the diffuser perpendicular to the laser and turning on the laser with one hand. In a very quick and dirty installation, this could be fixed with judicious application of the Time Lord’s secret weapon, but the more realistic plan involves constructing a clip for the laser that allows the diffuser to be adjusted for best effect. That’s in the future.

Sarracenia under visible light

Now the acid test. Since most of my previous experiments involved Sarracenia and Nepenthes pitcher plants, the first series of experiments involve going out into the middle of a collection of Sarracenia with the newly modified laser and viewing the effects. As important as using UV on the plants was recording their appearance under visible light, if only to see if the plant had any correlation between its markings under visible light and any fluorescence in UV. Hence, a quick photo of the pitcher is necessary before moving on.

Sarracenia under UV, first attempt

The first test of the newly modified laser was an unqualified success, at least to the naked eye. The beam stimulated fluorescence in most carnivores, including hints in sundews (particularly Drosera filliformis), as well as reddish chlorophyll fluorescence in Venus flytraps. In fact, the extreme fluorescence in Sarracenia of all species helps explain why Sarracenia seem to capture so many moths, and the next big project is to capture similar fluorescence, if any, in the genus’s relatives Darlingtonia and Heliamphora. The only limitation lay with the camera: working without a net, the fluorescence was barely visible in final photos, even if it was nearly blinding in person.

Sarracenia pitcher under UV

Contrary to popular opinion, this is not the cover to the latest Hawkwind album. While the fluorescence can be seen in the throat of the pitcher (on the right) and the edges of the lid (left), it’s still not perfect. Time for more experimentation with shutter speed and light sensitivity.

Sarracenia under UV with blue spots

One of the more interesting phenomena that was observed while working with the laser with Sarracenia were distinctive neon blue spots on either side of the lid interior, visible here on the upper left of the lid. Not all pitchers have these, but larger pitchers do, and they almost resemble fragments of Australian fire opal or blue ammolite to the naked eye. I have no idea if these work as additional lures to insect prey, but that’s yet another experiment for the near future.

Triggerplant blooms under UV

And as an additional treat for botanists, the laser apparatus also helps bring out UV colors and patterns in flowers as well. The hot pink blooms of the triggerplant Stylidium debile already stand out to human eyes, but under UV, they’re a brilliant neon pink. Combine that with known fluorescence in the blooms of other carnivores and protocarnivores (particularly Utricularia bisquamata, which has a spot that glows a brilliant DayGlo yellow under UV), and this laser arrangement could be used to study the attractiveness of flowers to insects without requiring special camera lenses or other equipment. If further tests with sticky trap carnivores such as Drosera and Byblis work out, it may also offer a way to search for possible attractants in protocarnivorous and potentially protocarnivorous plants as Probiscidea.

In summary, with the advent of inexpensive violet lasers, carnivorous plant researchers may now view fluorescent attractors in carnivores for the cost of dinner and a movie. I hope that this encourages further experimentation with UV on carnivores, particularly among college and high school students, as well as among layperson carnivore enthusiasts. As always, please feel free to ask questions or add commentary below, particularly concerning ways to improve upon the results.

Thursday is Resource Day

(Lots and lots of interesting facts and resources come across the Triffid Ranch potting bench every day, and posting about every last one means that too many are lost in the news churn. Hence, a return of Resource Day, updated every Thursday.)

It takes a serious sense of humor to live in Texas during the summer, and gardening in Texas requires a particular sense of whimsy. After all, when it’s the end of August and Zeus, Thor, Tlaloc, and Kakatal are laughing and pointing (with one finger, mind you) at your efforts to keep tomatoes alive, all you can do is laugh back. The best way to do this is to make plans for autumn gardening, because after the air no longer smells like burning flint, you have perfect gardening weather from September to the beginning of December and beyond. I’m not exaggerating when I tell people I’ve harvested fresh tomatoes right off the bush for Christmas dinner, and you’d be amazed at how many habanero peppers you can pick on New Year’s Day when everyone else in the neighborhood is hung over.

Oh, and I keep laughing, too. That’s why, in a day where we’re justifiably wondering about the place of the print periodical, I keep renewing my dead-tree subscription to Texas Gardener magazine. I’ve let many of my regular magazine resources slip because of editorial changes or because they’re no longer relevant, but this is one I read all the way through, every two months. Did I mention that sometimes I’m laughing at the articles to keep from screaming? (I don’t necessarily wish harm on some of the writers. It’s just after reading the latest issue’s feature on growing bananas, I just want to eat their hearts in order to steal their superpowers.)

And for those who want a suitably maniacal mad-scientist cackle with their laughter, I’d like to note that the latest American Science & Surplus catalog arrived the other day, and I am in TROUBLE. Specifically, the Czarina actually has good reason to work with a lab still, and I have more of a need for a solar-powered vent fan than most. (Sadly for folks outside the US: I’ve looked for nearly eight years for a comparable supplier who ships outside the US and its territories, but have yet to find anything. If this changes, I’ll definitely let you know.)

Consume mass quantities

Another quick posting, and then once more unto the breach, once more. Friends and family already know that the FarmTek catalog is my favorite horticulture porn these days, and the crew over there is offering a special for Facebook fans. As I keep telling the Czarina, all I need is a new Nepenthes greenhouse; it’s not like I’m blowing it on bad cocaine and journalism degrees, right?

For those who can’t quite afford a new greenhouse, there’s always fun to be had with the new items at American Science & Surplus. That place will be the death of me, as I’m just now finishing a big project involving several items from the Home & Garden section. If you don’t hear from me by Tuesday, send a rescue expedition, okay?